Xinhao Li

North Carolina State University, Raleigh, NC

Phone: +1-919-607-1990

Email: xli74@ncsu.edu

Website: https://xinhaoli74.github.io

Ph.D. candidate in Chemistry (expecting to graduate in *Nov.* **2020**). Expertise in applying **machine learning** techniques and **cheminformatics** to solve chemistry problems, *e.g.*, QSAR modeling. Well-versed in programming languages **Python** and **R** and machine learning toolkits such as **PyTorch** and **Scikit-Learn**. Proficient skills in chemical data mining, curation, analysis, visualization, and modeling.

Experience

Graduate Research AssistantAdvisor: **Denis Fourches**Aug 2017 – Nov 2020 (expected)

- Development of Novel Quantitative Structure-Property/Activity Relationship (QSPR/QSAR) Modeling Methodologies:
 - MolPMoFiT: an effective transfer learning method based on self-supervised pre-training
 + task-specific fine-tuning for QSAR modeling. MolPMoFiT pre-trained a universal
 molecular structure prediction model using one million unlabeled molecules from ChEMBL
 and then fine-tuned it for various QSPR/QSAR tasks. (*J Cheminform* 2020, 12, 27)
 - Hierarchical QSAR: An effective ensemble/stacking modeling method that Integrating binary, multiclass, and regression models for predicting acute oral systemic toxicity. (Chem. Res. Toxicol. 2020, 33, 353–366)
- **SMILES Pair Encoding (SPE)**: a data-driven substructure tokenization algorithm for deep learning.
 - SPE splits SMILES into human-readable and chemically explainable substrings and shows superior performances on both generative and predictive tasks compared to the atomlevel tokenization (ChemRxiv 2020)

Computational Sciences Intern

GlaxoSmithKline, Collegeville, PA May 2020 – Aug 2020

- Explored transfer learning approaches to QSAR modeling for lead optimization endpoints.
- Developed twp pre-trained models based on LSTM and Transformer for transfer learning.
- Benchmarking machine learning algorithms (SMILES-based and Graph-based deep learning models, lightGBM etc.) on two internal and eight public datasets.

Education

PhD in Chemistry	North Carolina State University	Raleigh, NC	2017 – 202	0.11 (expected)
MS in Chemistry	Beijing University of Chemical Ted	chnology Beijing	g, China	2013 –2016
BS in Chemistry	Beijing University of Chemical Ted	chnology Beijing	g, China	2009 –2013

Skills

- Programming Toolkits: Python, R, Git, Linux
- Cheminformatics Toolkits: KNIME, RDKit, Schrodinger
- Machine Learning Toolkits: Pytorch, Keras, Scikit-Learn, Streamlit, Jupyter Notebook

Publications

- 1. **Xinhao Li**, Nicole Kleinstreuer and Denis Fourches. Hierarchical Quantitative Structure—Activity Relationship Modeling Approach for Integrating Binary, Multiclass, and Regression Models of Acute Oral Systemic Toxicity. *Chemical Research in Toxicology*. **2020**, *33*, 353-366.
- 2. **Xinhao Li** and Denis Fourches. Inductive Transfer Learning for Molecular Activity Prediction: Next-Gen QSAR Models with MolPMoFiT. *J Cheminform* **2020**, 12, 27.
- 3. **Xinhao Li** and Denis Fourches. SMILES Pair Encoding: A Data-Driven Substructure Tokenization Algorithm for Deep Learning. *ChemRxiv* **2020**