Xinhao Li

North Carolina State University, Raleigh, NC

Phone: +1-919-607-1990

Email: xli74@ncsu.edu

Website: https://xinhaoli74.github.io

Ph.D. candidate in Chemistry. Experienced in applying **machine learning** techniques and **cheminformatics** for solving chemistry problems, *e.g.*, molecular activity/propriety prediction. Well-versed in programming languages including **Python** and **R**. Proficient skills in chemical data mining, curation, analysis, visualization, and modeling.

Research Interests

- Cheminformatics
- QSAR Modeling
- Computational Toxicology

- Machine Learning/Deep learning
- Transfer Learning
- Data Mining, Analysis, Visualization

Research

Graduate Research Assistant

Advisor: Denis Fourches

Fourches Lab, NCSU Aug 2017 - Current

- Development of Novel Quantitative Structure-Property/Activity Relationship (QSPR/QSAR)
 Modeling Methodologies:
 - MolPMoFiT: an effective transfer learning method based on self-supervised pre-training

 task-specific fine-tuning for QSAR modeling. MolPMoFiT pre-trained a universal
 molecular structure prediction model using one million unlabeled molecules from ChEMBL
 and then fine-tuned it for various QSPR/QSAR tasks. (ChemRxiv 2019)
 - Hierarchical QSAR: An effective ensemble/stacking modeling method that Integrating binary/multi classification and regression models for predicting acute oral systemic toxicity. (Chemical Research in Toxicology 2020)
- Chemical Data Curation and Validation:
 - Molecular DataSets (MolDS): A toolkit (Python Package) for curating, standardizing and diagnosing Molecular Data Sets for benchmarking machine learning methods. (GitHub)
- Software Development:
 - CryptoChem: A novel cryptographic and data storage method based on cheminformatics, machine learning, and big chemical data. Two independent software were developed: MOLWRITE and MOLREAD. MOLWRITE encrypts the text/image data into chemical message and MOLREAD decrypts the encoded chemical message back to text/image.

Education

PhD in Chemistry
MS in Chemistry
BS in Chemistry

North Carolina State University Raleigh, NC 2017 – 2021.05 (*expected*)

Beijing University of Chemical Technology Beijing, China 2013 –2016

Beijing University of Chemical Technology Beijing, China 2009 –2013

Skills

- **Programming Toolkits:** Python, R, Git
- Cheminformatics Toolkits: KNIME, RDKit, Schrödinger, ChemAxon
- Machine Learning Toolkits: Pytorch, Keras, Scikit-Learn, Streamlit

Data Science Related Courses

deeplearning.ai: Deep Learning Specialization; Algorithmic Toolbox (Coursera)

Publications

- 1. **Xinhao Li**, Nicole Kleinstreuer and Denis Fourches. Hierarchical Quantitative Structure–Activity Relationship Modeling Approach for Integrating Binary, Multiclass, and Regression Models of Acute Oral Systemic Toxicity. *Chemical Research in Toxicology*. **2020**, *33*, 353-366.
- 2. **Xinhao Li** and Denis Fourches. (2019): Inductive Transfer Learning for Molecular Activity Prediction: Next-Gen QSAR Models with MolPMoFiT. *ChemRxiv*.
- 3. **Xinhao Li** and Jiaxi Xu. (2017): Effects of the Microwave Power on the Microwave-assisted Esterification. *Current Microwave Chemistry*. 158-162.
- 4. **Xinhao Li** and Jiaxi Xu. (2017): Identification of Microwave Selective Heating Effort in an Intermolecular Reaction with Hammett Linear Relationship as a Molecular Level Probe. *Current Microwave Chemistry*. 339-346.
- 5. **Xinhao Li** and Jiaxi Xu. (2016): Determination on temperature gradient of different polar reactants in reaction mixture under microwave irradiation with molecular probe. *Tetrahedron*. *35*, 5515-5520.
- 6. Shanyan Mo, **Xinhao Li** and Jiaxi Xu. (2014): In Situ-Generated Iodonium Ylides as Safe Carbene Precursors for the Chemoselective Intramolecular Buchner Reaction. *J. Org. Chem.* 19, 9186-9195.

Presentations

- 1. NC State Chemistry Recruitment Weekend (March 2019, Raleigh, NC)
 - **Xinhao Li,** Denis Fourches. Hierarchical H-QSAR Modeling Method that Integrates Binary/Multi Classification and Regression Models for Predicting Acute Oral Systemic Toxicity. (**Poster**)
- 2. American Chemical Society Conference (April 2019, Orlando, FL)
 - **Xinhao Li,** Denis Fourches. Hierarchical H-QSAR Modeling Method that Integrates Binary/Multi Classification and Regression Models for Predicting Acute Oral Systemic Toxicity. (**Poster**)
- 3. "Innovations in Agriculture" Scientific Poster Session at BASF (May 2019, RTP, NC)
 Xinhao Li, Denis Fourches. Hierarchical H-QSAR Modeling Method that Integrates Binary/Multi
 Classification and Regression Models for Predicting Acute Oral Systemic Toxicity. (Poster)
- NCSU/BASF Poster Session (Aug 2019, Raleigh, NC)
 Xinhao Li, Denis Fourches. Transfer Learning for Molecular Property/Activity Prediction. (Poster)
- 5. Triangle Machine Learning Day (Sep 2019, Durham, NC)
 Xinhao Li, Denis Fourches. Transfer Learning for Molecular Property/Activity Prediction. (Oral Presentation & Poster)
- 6. Al Powered Drug Discovery and Manufacturing (Feb 2020, MIT, Cambridge, MA)

 Xinhao Li, Denis Fourches. Inductive Transfer Learning for Molecular Activity Prediction. (Poster)

Awards

1. CINF Scholarship for Scientific Excellence awarded by ACS CINF (2019 Spring)